Il NUMERO della FILA è contenuto nel testo dell'esercizio n° 2 ed è il coefficiente dell'unità immaginaria all'interno del primo fattore.

Fila 1

- 1. (a) dom $f = \left[-\frac{1}{2}, +\infty\right]$; non ci sono simmetrie.
 - (b) Non ci sono asintoti orizzontali, verticali e obliqui.
 - (c) $f'(x) = \frac{2-x}{3(x+1)} \frac{1}{\sqrt{2x+1}}$; dom $f' = \left(-\frac{1}{2}, +\infty\right) \subset \text{dom } f$; $x = -\frac{1}{2}$ punto a tangente verticale: $f'_+\left(\frac{1}{2}\right) = +\infty$.
 - (d) f strettamente crescente in $\left(-\frac{1}{2},2\right)$; f strettamente decrescente in $(2,+\infty)$, x=2 è punto di massimo assoluto, $x=-\frac{1}{2}$ è punto di minimo relativo. Non esistono punti di minimo assoluto in quanto f è illimitata inferiormente.
 - (e) $f''(x) = \frac{x^2 7x 5}{3(x+1)^2 \sqrt{(2x+1)^3}}$
 - (f) Poiché f è descrescente in un intorno di $+\infty$ e $\lim_{x\to+\infty} f'(x) = 0$, allora f risulta convessa in un intorno di $+\infty$. Si deduce che esiste un punto di flesso a tangente obliqua nell'intervallo $(2, +\infty)$.
- **2.** $z_1 = \left(\frac{\sqrt{3}}{2} \frac{1}{2}i\right), z_2 = i, z_3 = -\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_4 = -i, z_5 = -3i.$
- 3. $\ell = -3$.
- 4. L'integrale è convergente per $\alpha \in (1, \frac{5}{2})$, divergente negli altri casi.
- 5. f è continua in x=0 per $\beta=3$. Se $\beta\neq 3$ allora il punto x=0 è un punto di discontinuità eliminabile. Nel caso in cui $\beta=3$, f non è derivabile in x=0 e il punto x=0 è di cuspide.
- 6. I = -1
- 7. $y(x) = 3\arcsin(x)$.

- 1. (a) dom $f = \left[-\frac{1}{2}, +\infty\right]$; non ci sono simmetrie.
 - (b) Non ci sono asintoti orizzontali, verticali e obliqui.
 - (c) $f'(x) = \frac{3-x}{4(x+1)} \frac{1}{\sqrt{2x+1}}$; dom $f' = \left(-\frac{1}{2}, +\infty\right) \subset \text{dom } f$; $x = -\frac{1}{2}$ punto a tangente verticale: $f'_+\left(\frac{1}{2}\right) = +\infty$.
 - (d) f strettamente crescente in $\left(-\frac{1}{2},3\right)$; f strettamente decrescente in $(3,+\infty)$, x=3 è punto di massimo assoluto, $x=-\frac{1}{2}$ è punto di minimo relativo. Non esistono punti di minimo assoluto in quanto f è illimitata inferiormente.
 - (e) $f''(x) = \frac{x^2 10x 7}{4(x+1)^2 \sqrt{(2x+1)^3}}$
 - (f) Poiché f è descrescente in un intorno di $+\infty$ e $\lim_{x\to+\infty} f'(x) = 0$, allora f risulta convessa in un intorno di $+\infty$. Si deduce che esiste un punto di flesso a tangente obliqua nell'intervallo $(3, +\infty)$.

- **2.** $z_1 = \sqrt[3]{2} \left(\frac{\sqrt{3}}{2} \frac{1}{2}i \right), z_2 = \sqrt[3]{2} i, z_3 = -\sqrt[3]{2} \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i \right), z_4 = -i, z_5 = -5i.$
- 3. $\ell = -3$.
- 4. L'integrale è convergente per $\alpha \in (1, \frac{8}{3})$, divergente negli altri casi.
- 5. f è continua in x=0 per $\beta=5$. Se $\beta\neq 5$ allora il punto x=0 è un punto di discontinuità eliminabile. Nel caso in cui $\beta=5$, f non è derivabile in x=0 e il punto x=0 è di cuspide.
- 6. I = -2
- 7. $y(x) = 5\arcsin(x)$.

Fila 3

- 1. (a) dom $f = \left[-\frac{1}{2}, +\infty\right)$; non ci sono simmetrie.
 - (b) Non ci sono asintoti orizzontali, verticali e obliqui.
 - (c) $f'(x) = \frac{4-x}{5(x+1)} \frac{1}{\sqrt{2x+1}}$; dom $f' = \left(-\frac{1}{2}, +\infty\right) \subset \text{dom } f$; $x = -\frac{1}{2}$ punto a tangente verticale: $f'_+\left(\frac{1}{2}\right) = +\infty$.
 - (d) f strettamente crescente in $\left(-\frac{1}{2},4\right)$; f strettamente decrescente in $(4,+\infty)$, x=4 è punto di massimo assoluto, $x=-\frac{1}{2}$ è punto di minimo relativo. Non esistono punti di minimo assoluto in quanto f è illimitata inferiormente.
 - (e) $f''(x) = \frac{x^2 13x 9}{5(x+1)^2 \sqrt{(2x+1)^3}}$
 - (f) Poiché f è descrescente in un intorno di $+\infty$ e $\lim_{x\to+\infty} f'(x) = 0$, allora f risulta convessa in un intorno di $+\infty$. Si deduce che esiste un punto di flesso a tangente obliqua nell'intervallo $(4, +\infty)$.
- **2.** $z_1 = \sqrt[3]{3} \left(\frac{\sqrt{3}}{2} \frac{1}{2}i \right), z_2 = \sqrt[3]{3} i, z_3 = -\sqrt[3]{3} \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i \right), z_4 = -i, z_5 = -7i.$
- 3. $\ell = -3$.
- 4. L'integrale è convergente per $\alpha \in (1, \frac{11}{4})$, divergente negli altri casi.
- 5. f è continua in x=0 per $\beta=7$. Se $\beta\neq 7$ allora il punto x=0 è un punto di discontinuità eliminabile. Nel caso in cui $\beta=7$, f non è derivabile in x=0 e il punto x=0 è di cuspide.
- 6. I = -3
- 7. $y(x) = 7\arcsin(x)$.

- 1. (a) dom $f = \left[-\frac{1}{2}, +\infty \right]$; non ci sono simmetrie.
 - (b) Non ci sono asintoti orizzontali, verticali e obliqui.
 - (c) $f'(x) = \frac{5-x}{6(x+1)} \frac{1}{\sqrt{2x+1}}$; dom $f' = \left(-\frac{1}{2}, +\infty\right) \subset \text{dom } f$; $x = -\frac{1}{2}$ punto a tangente verticale: $f'_+\left(\frac{1}{2}\right) = +\infty$.

- (d) f strettamente crescente in $\left(-\frac{1}{2}, 5\right)$; f strettamente decrescente in $(5, +\infty)$, x = 5 è punto di massimo assoluto, $x = -\frac{1}{2}$ è punto di minimo relativo. Non esistono punti di minimo assoluto in quanto f è illimitata inferiormente.
- (e) $f''(x) = \frac{x^2 16x 11}{6(x+1)^2 \sqrt{(2x+1)^3}}$
- (f) Poiché f è descrescente in un intorno di $+\infty$ e $\lim_{x\to+\infty} f'(x) = 0$, allora f risulta convessa in un intorno di $+\infty$. Si deduce che esiste un punto di flesso a tangente obliqua nell'intervallo $(5, +\infty)$.
- **2.** $z_1 = \sqrt[3]{4} \left(\frac{\sqrt{3}}{2} \frac{1}{2}i \right), z_2 = \sqrt[3]{4} i, z_3 = -\sqrt[3]{4} \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i \right), z_4 = -i, z_5 = -9i.$
- 3. $\ell = -3$.
- 4. L'integrale è convergente per $\alpha \in (1, \frac{14}{5})$, divergente negli altri casi.
- 5. f è continua in x = 0 per $\beta = 9$. Se $\beta \neq 9$ allora il punto x = 0 è un punto di discontinuità eliminabile. Nel caso in cui $\beta = 9$, f non è derivabile in x = 0 e il punto x = 0 è di cuspide.
- 6. I = -4
- 7. $y(x) = 9\arcsin(x)$.

- 1. (a) dom $f = \left[-\frac{1}{2}, +\infty\right)$; non ci sono simmetrie.
 - (b) Non ci sono asintoti orizzontali, verticali e obliqui.
 - (c) $f'(x) = \frac{6-x}{7(x+1)} \frac{1}{\sqrt{2x+1}}$; dom $f' = \left(-\frac{1}{2}, +\infty\right) \subset \text{dom } f$; $x = -\frac{1}{2}$ punto a tangente verticale: $f'_+\left(\frac{1}{2}\right) = +\infty$.
 - (d) f strettamente crescente in $\left(-\frac{1}{2}, 6\right)$; f strettamente decrescente in $(6, +\infty)$, x = 6 è punto di massimo assoluto, $x = -\frac{1}{2}$ è punto di minimo relativo. Non esistono punti di minimo assoluto in quanto f è illimitata inferiormente.
 - (e) $f''(x) = \frac{x^2 19x 13}{7(x+1)^2 \sqrt{(2x+1)^3}}$
 - (f) Poiché f è descrescente in un intorno di $+\infty$ e $\lim_{x\to+\infty} f'(x) = 0$, allora f risulta convessa in un intorno di $+\infty$. Si deduce che esiste un punto di flesso a tangente obliqua nell'intervallo $(6, +\infty)$.
- **2.** $z_1 = \sqrt[3]{5} \left(\frac{\sqrt{3}}{2} \frac{1}{2}i \right), z_2 = \sqrt[3]{5} i, z_3 = -\sqrt[3]{5} \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i \right), z_4 = -i, z_5 = -11i.$
- 3. $\ell = -3$.
- 4. L'integrale è convergente per $\alpha \in (1, \frac{17}{6})$, divergente negli altri casi.
- 5. f è continua in x = 0 per $\beta = 11$. Se $\beta \neq 11$ allora il punto x = 0 è un punto di discontinuità eliminabile. Nel caso in cui $\beta = 11$, f non è derivabile in x = 0 e il punto x = 0 è di cuspide.
- 6. I = -5
- 7. $y(x) = 11 \arcsin(x)$.

- 1. (a) dom $f = \left[-\frac{1}{2}, +\infty\right)$; non ci sono simmetrie.
 - (b) Non ci sono asintoti orizzontali, verticali e obliqui.
 - (c) $f'(x) = \frac{7-x}{8(x+1)} \frac{1}{\sqrt{2x+1}}$; dom $f' = \left(-\frac{1}{2}, +\infty\right) \subset \text{dom } f$; $x = -\frac{1}{2}$ punto a tangente verticale: $f'_+\left(\frac{1}{2}\right) = +\infty$.
 - (d) f strettamente crescente in $\left(-\frac{1}{2},7\right)$; f strettamente decrescente in $(7,+\infty)$, x=7 è punto di massimo assoluto, $x=-\frac{1}{2}$ è punto di minimo relativo. Non esistono punti di minimo assoluto in quanto f è illimitata inferiormente.
 - (e) $f''(x) = \frac{x^2 22x 15}{8(x+1)^2 \sqrt{(2x+1)^3}}$
 - (f) Poiché f è descrescente in un intorno di $+\infty$ e $\lim_{x\to+\infty} f'(x) = 0$, allora f risulta convessa in un intorno di $+\infty$. Si deduce che esiste un punto di flesso a tangente obliqua nell'intervallo $(7, +\infty)$.
- **2.** $z_1 = \sqrt[3]{6} \left(\frac{\sqrt{3}}{2} \frac{1}{2}i \right), z_2 = \sqrt[3]{6} i, z_3 = -\sqrt[3]{6} \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i \right), z_4 = -i, z_5 = -13i.$
- 3. $\ell = -3$.
- 4. L'integrale è convergente per $\alpha \in (1, \frac{20}{7})$, divergente negli altri casi.
- 5. f è continua in x = 0 per $\beta = 13$. Se $\beta \neq 13$ allora il punto x = 0 è un punto di discontinuità eliminabile. Nel caso in cui $\beta = 13$, f non è derivabile in x = 0 e il punto x = 0 è di cuspide.
- 6. I = -6
- 7. $y(x) = 13\arcsin(x)$.