Il NUMERO della FILA è contenuto nel testo dell'esercizio n° 7 ed è il valore di x per cui la funzione f assume valore nullo.

Fila 1

- 1. (a) $dom f =]-\infty, log 3[$, non ci sono simmetrie.
 - (b) $\lim_{x\to-\infty} f(x) = \log 3$, $\lim_{x\to 3^-} f(x) = -\infty$. La retta $y = \log 3$ è asintoto orizzontale per $x\to -\infty$, la retta $x=\log 3$ è asintoto verticale sinistro. Non ci sono asintoti obliqui.
 - (c) $f'(x) = e^x \frac{2 e^x}{3 e^x}$, domf' = dom f, non ci sono punti di non derivabilità.
 - (d) f crescente in $]-\infty$, $\log 2[$, decrescente in $]\log 2$, $\log 3[$. $x=\log 2$ punto di massimo assoluto; la funzione è illimitata inferiormente.
 - (e) $f''(x) = e^x \frac{6 6e^x + e^{2x}}{(3 e^x)^2}$, f convessa in $] \infty$, $\log(3 \sqrt{3})[$, $x = \log(3 \sqrt{3})$ punto di flesso.
- 2. La sottosuccessione per n pari è crescente, la sottosuccessione per n dispari è crescente. Applicando il teorema delle successioni monotone alle due sottosuccessioni ed unendo i risultati ottenuti, si ha: $\min A = 1$, $\sup A = +\infty$, $\nexists \max A$.
- 3. Il luogo geometrico cercato è il segmento intersezione fra il cerchio di centro (3,1) e raggio 2 e l'asse delle x.
- 4. 343(i-1)
- 5. $\ell = 0 \text{ se } \alpha > -6, \ \ell = 3/4 \text{ se } \alpha = -6, \ \ell = +\infty \text{ se } \alpha < -6$
- 6. $\ell = \frac{8}{\pi}$
- 7. Se $\gamma > 0$ f è continua in tutto \mathbb{R} ; se $\gamma \leq 0$ f è continua in $\mathbb{R} \setminus \{1\}$ ed in x = 1 ammette un punto di discontinuità di seconda specie, se $\gamma = 0$, di infinito, se $\gamma < 0$.

Fila 2

- 1. (a) $dom f =]-\infty, log 4[$, non ci sono simmetrie.
 - (b) $\lim_{x\to-\infty} f(x) = \log 4$, $\lim_{x\to 4^-} f(x) = -\infty$. La retta $y = \log 4$ è asintoto orizzontale per $x\to -\infty$, la retta $x = \log 4$ è asintoto verticale sinistro. Non ci sono asintoti obliqui.
 - (c) $f'(x) = e^x \frac{3 e^x}{4 e^x}$, domf' = domf, non ci sono punti di non derivabilità.
 - (d) f crescente in $]-\infty$, $\log 3[$, decrescente in $]\log 3$, $\log 4[$. $x = \log 3$ punto di massimo assoluto; la funzione è illimitata inferiormente.
 - (e) $f''(x) = e^x \frac{12 8e^x + e^{2x}}{(4 e^x)^2}$, f convessa in $] \infty$, $\log(4 \sqrt{4})[$, $x = \log(4 \sqrt{4})$ punto di flesso.
- 2. La sottosuccessione per n pari è crescente, la sottosuccessione per n dispari è crescente. Applicando il teorema delle successioni monotone alle due sottosuccessioni ed unendo i risultati ottenuti, si ha: $\min A = 1$, $\sup A = +\infty$, $\nexists \max A$.

- 3. Il luogo geometrico cercato è il segmento intersezione fra il cerchio di centro (5,1) e raggio 3 e l'asse delle x.
- 4. 216(i-1)
- **5.** $\ell = 0$ se $\alpha > -6$, $\ell = 5/4$ se $\alpha = -6$, $\ell = +\infty$ se $\alpha < -6$
- 6. $\ell = \frac{27}{\pi}$
- 7. Se $\gamma > 0$ f è continua in tutto \mathbb{R} ; se $\gamma \leq 0$ f è continua in $\mathbb{R} \setminus \{2\}$ ed in x = 2 ammette un punto di discontinuità di seconda specie, se $\gamma = 0$, di infinito, se $\gamma < 0$.

Fila 3

- 1. (a) $dom f =]-\infty, log 5[$, non ci sono simmetrie.
 - (b) $\lim_{x\to-\infty} f(x) = \log 5$, $\lim_{x\to 5^-} f(x) = -\infty$. La retta $y = \log 5$ è asintoto orizzontale per $x\to-\infty$, la retta $x=\log 5$ è asintoto verticale sinistro. Non ci sono asintoti obliqui.
 - (c) $f'(x) = e^x \frac{4 e^x}{5 e^x}$, dom f' = dom f, non ci sono punti di non derivabilità.
 - (d) f crescente in $]-\infty$, $\log 4[$, decrescente in $]\log 4$, $\log 5[$. $x = \log 4$ punto di massimo assoluto; la funzione è illimitata inferiormente.
 - (e) $f''(x) = e^x \frac{20 10e^x + e^{2x}}{(5 e^x)^2}$, f convessa in $] \infty$, $\log(5 \sqrt{5})[$, $x = \log(5 \sqrt{5})$ punto di flesso.
- 2. La sottosuccessione per n pari è crescente, la sottosuccessione per n dispari è crescente. Applicando il teorema delle successioni monotone alle due sottosuccessioni ed unendo i risultati ottenuti, si ha: $\min A = 1$, $\sup A = +\infty$, $\nexists \max A$.
- 3. Il luogo geometrico cercato è il segmento intersezione fra il cerchio di centro (7,1) e raggio 4 e l'asse delle x.
- 4. 125(i-1)
- **5.** $\ell = 0$ se $\alpha > -6$, $\ell = 7/4$ se $\alpha = -6$, $\ell = +\infty$ se $\alpha < -6$
- 6. $\ell = \frac{64}{\pi}$
- 7. Se $\gamma > 0$ f è continua in tutto \mathbb{R} ; se $\gamma \leq 0$ f è continua in $\mathbb{R} \setminus \{3\}$ ed in x = 3 ammette un punto di discontinuità di seconda specie, se $\gamma = 0$, di infinito, se $\gamma < 0$.

Fila 4

- 1. (a) $dom f =]-\infty, log 6[$, non ci sono simmetrie.
 - (b) $\lim_{x\to-\infty} f(x) = \log 6$, $\lim_{x\to 6^-} f(x) = -\infty$. La retta $y = \log 6$ è asintoto orizzontale per $x\to -\infty$, la retta $x = \log 6$ è asintoto verticale sinistro. Non ci sono asintoti obliqui.
 - (c) $f'(x) = e^x \frac{5 e^x}{6 e^x}$, dom f' = dom f, non ci sono punti di non derivabilità.
 - (d) f crescente in $]-\infty$, $\log 5[$, decrescente in $]\log 5$, $\log 6[$. $x = \log 5$ punto di massimo assoluto; la funzione è illimitata inferiormente.

- (e) $f''(x) = e^x \frac{30 12e^x + e^{2x}}{(6 e^x)^2}$, f convessa in $] \infty$, $\log(6 \sqrt{6})[$, $x = \log(6 \sqrt{6})$ punto di flesso.
- 2. La sottosuccessione per n pari è crescente, la sottosuccessione per n dispari è crescente. Applicando il teorema delle successioni monotone alle due sottosuccessioni ed unendo i risultati ottenuti, si ha: $\min A = 1$, $\sup A = +\infty$, $\nexists \max A$.
- 3. Il luogo geometrico cercato è il segmento intersezione fra il cerchio di centro (9,1) e raggio 5 e l'asse delle x.
- 4. 64(i-1)
- **5.** $\ell = 0 \text{ se } \alpha > -6, \ \ell = 9/4 \text{ se } \alpha = -6, \ \ell = +\infty \text{ se } \alpha < -6$
- 6. $\ell = \frac{125}{\pi}$
- 7. Se $\gamma > 0$ f è continua in tutto \mathbb{R} ; se $\gamma \leq 0$ f è continua in $\mathbb{R} \setminus \{4\}$ ed in x = 4 ammette un punto di discontinuità di seconda specie, se $\gamma = 0$, di infinito, se $\gamma < 0$.

Fila 5

- 1. (a) $dom f =]-\infty, log 7[$, non ci sono simmetrie.
 - (b) $\lim_{x\to-\infty} f(x) = \log 7$, $\lim_{x\to7^-} f(x) = -\infty$. La retta $y = \log 7$ è asintoto orizzontale per $x\to-\infty$, la retta $x=\log 7$ è asintoto verticale sinistro. Non ci sono asintoti obliqui.
 - (c) $f'(x) = e^x \frac{6 e^x}{7 e^x}$, dom f' = dom f, non ci sono punti di non derivabilità.
 - (d) f crescente in $]-\infty$, $\log 6[$, decrescente in $]\log 6$, $\log 7[$. $x=\log 6$ punto di massimo assoluto; la funzione è illimitata inferiormente.
 - (e) $f''(x) = e^x \frac{42 14e^x + e^{2x}}{(7 e^x)^2}$, f convessa in $] \infty$, $\log(7 \sqrt{7})[$, $x = \log(7 \sqrt{7})$ punto di flesso.
- 2. La sottosuccessione per n pari è crescente, la sottosuccessione per n dispari è crescente. Applicando il teorema delle successioni monotone alle due sottosuccessioni ed unendo i risultati ottenuti, si ha: $\min A = 1$, $\sup A = +\infty$, $\nexists \max A$.
- 3. Il luogo geometrico cercato è il segmento intersezione fra il cerchio di centro (11,1) e raggio 6 e l'asse delle x.
- 4. 27(i-1)
- **5.** $\ell = 0 \text{ se } \alpha > -6, \ \ell = 11/4 \text{ se } \alpha = -6, \ \ell = +\infty \text{ se } \alpha < -6$
- 6. $\ell = \frac{216}{\pi}$
- 7. Se $\gamma > 0$ f è continua in tutto \mathbb{R} ; se $\gamma \leq 0$ f è continua in $\mathbb{R} \setminus \{5\}$ ed in x = 5 ammette un punto di discontinuità di seconda specie, se $\gamma = 0$, di infinito, se $\gamma < 0$.

Fila 6

1. (a) $dom f =]-\infty, log 8[, non ci sono simmetrie.$

- (b) $\lim_{x\to-\infty} f(x) = \log 8$, $\lim_{x\to 8^-} f(x) = -\infty$. La retta $y = \log 8$ è asintoto orizzontale per $x\to-\infty$, la retta $x=\log 8$ è asintoto verticale sinistro. Non ci sono asintoti obliqui.
- (c) $f'(x) = e^x \frac{7 e^x}{8 e^x}$, dom f' = dom f, non ci sono punti di non derivabilità.
- (d) f crescente in $]-\infty$, $\log 7[$, decrescente in $]\log 7$, $\log 8[$. $x=\log 7$ punto di massimo assoluto; la funzione è illimitata inferiormente.
- (e) $f''(x) = e^x \frac{56 16e^x + e^{2x}}{(8 e^x)^2}$, f convessa in $] \infty$, $\log(8 \sqrt{8})[$, $x = \log(8 \sqrt{8})$ punto di flesso.
- 2. La sottosuccessione per n pari è crescente, la sottosuccessione per n dispari è crescente. Applicando il teorema delle successioni monotone alle due sottosuccessioni ed unendo i risultati ottenuti, si ha: $\min A = 1$, $\sup A = +\infty$, $\nexists \max A$.
- 3. Il luogo geometrico cercato è il segmento intersezione fra il cerchio di centro (13,1) e raggio 7 e l'asse delle x.
- 4. 8(i-1)
- **5.** $\ell = 0 \text{ se } \alpha > -6, \ \ell = 13/4 \text{ se } \alpha = -6, \ \ell = +\infty \text{ se } \alpha < -6$
- 6. $\ell = \frac{343}{\pi}$
- 7. Se $\gamma > 0$ f è continua in tutto \mathbb{R} ; se $\gamma \leq 0$ f è continua in $\mathbb{R} \setminus \{6\}$ ed in x = 6 ammette un punto di discontinuità di seconda specie, se $\gamma = 0$, di infinito, se $\gamma < 0$.