LIMITI DI FUNZIONI

Intorni

Denotiamo $\mathbb{R}^+ = \{x \in \mathbb{R}, \ x > 0\}$. Def. Siano $x_0 \in \mathbb{R}$ e $r \in \mathbb{R}^+$. Chiamiamo **intorno** di centro x_0 e raggio r l'intervallo aperto e limitato

$$I_{r}(x_{0}) = (x_{0} - r, x_{0} + r) = \{x \in \mathbb{R} : |x - x_{0}| < r\}$$

$$\downarrow r$$

$$\downarrow r$$

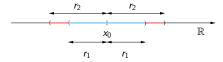
$$\downarrow x_{0} - r \qquad x \qquad x_{0} \qquad x_{0} + r$$

$$\downarrow R$$

Ricordando che $|x - x_0| = |x_0 - x|$ è la distanza di x da x_0 . $|x - x_0| < r$ vuol dire che la distanza di x da x_0 è minore di r, ovvero $x \in I_r(x_0)$.

Famiglia di intorni

Se fisso $x_0 \in \mathbb{R}$ e faccio variare $r \in \mathbb{R}^+$, ottengo la famiglia degli intorni di centro x_0 . In particolare se $r_1 < r_2$ si ha $I_{r_1}(x_0) \subset I_{r_2}(x_0)$



Def. $\forall a \in \mathbb{R}^+$, chiamiamo **intorno di** $+\infty$ di estremo inferiore a, l'intervallo aperto e superiormente illimitato

$$I_a(+\infty) = (a, +\infty) = \{x \in \mathbb{R} : x > a\}$$

$$\vdots$$

$$a \qquad \mathbb{R}$$

Analogamente, l'**intorno di** $-\infty$ di estremo superiore -a è

$$I_a(-\infty) = (-\infty, -a) = \{x \in \mathbb{R} : x < -a\}$$

$$\begin{array}{c} \\ \\ \\ \\ -a \end{array}$$

Intorni destri e sinistri

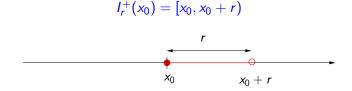
Def. Intorno sinistro di centro x_0 e raggio r > 0 è l'intervallo semiaperto a sinistra e limitato

$$I_r^-(x_0) = (x_0 - r, x_0]$$

$$r$$

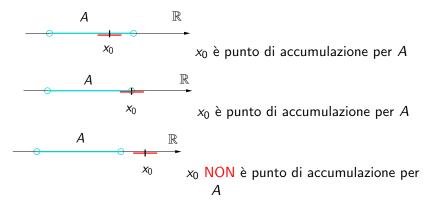
$$x_0 - r \qquad x_0$$

Def. **Intorno destro** di centro x_0 e raggio r > 0 è l'intervallo semiaperto a destra e limitato

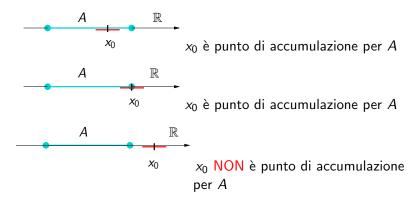


Punto di accumulazione

Def. Sia $A \subseteq \mathbb{R}$. Diciamo che $x_0 \in \overline{\mathbb{R}}$ è un **punto di** accumulazione per A se in ogni intorno di x_0 cade almeno un punto di A diverso da x_0 .

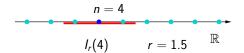


Punto di accumulazione

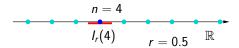


Se A=(a,b) è un intervallo aperto di \mathbb{R} , allora tutti i punti di accumulazione per A sono in [a,b]. Se A=[a,b] è un intervallo chiuso di \mathbb{R} , allora tutti i punti di accumulazione per A sono in [a,b]. Se $A \equiv \mathbb{R}$, allora un qualsiasi punto $x_0 \in \overline{\mathbb{R}}$ (finito o infinito) è di accumulazione per \mathbb{R} .

Sia $A = \mathbb{N}$. L'unico punto di accumulazione per \mathbb{N} è $+\infty$ (Def. Sia $A \subseteq \mathbb{R}$. Diciamo che $x_0 \in \mathbb{R}$ è un punto di accumulazione per A se in ogni intorno di x_0 cade almeno un punto di A diverso da x_0 .) Consideriamo n = 4. Possiamo costruire molti intorni $I_r(4)$ che contengono altri numeri naturali, ad esempio:



ma anche altrettanti intorni $I_r(4)$ che non contengono alcun altro numero naturale oltre a n=4, ad esempio:



Punti di accumulazione e punti isolati

CONCLUSIONE: n = 4 non è di accumulazione per \mathbb{N} .

 $\forall n \in \mathbb{N}$, n non può essere di accumulazione per \mathbb{N} .

Def. Un punto di $A \subset \mathbb{R}$ che non è di accumulazione per A è detto punto isolato.

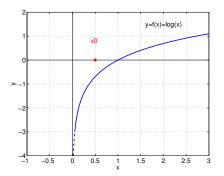
Esempio $A = (0,1) \cup \{2\} \cup (2.5,6)$. x = 2 è un punto isolato in A.

Quindi: tutti i numeri naturali sono punti isolati in \mathbb{N} , l'unico punto di accumulazione per \mathbb{N} è $+\infty$.

Sia $f(x) = \log(x)$. Determinare l'insieme dei punti di accumulazione del dominio di f.

$$A = \mathsf{dom}(f) = (0, +\infty).$$

L'insieme dei punti di accumulazione di A è $[0, +\infty]$.

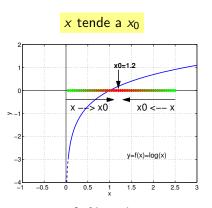


Limiti di funzione

Sia $f : dom(f) \subseteq \mathbb{R} \to \mathbb{R}$, y = f(x).

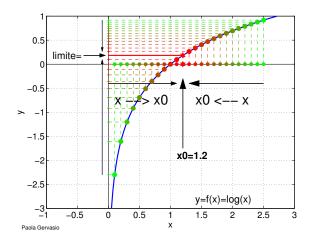
Sia x_0 un punto di accumulazione per dom(f).

Scrivere $x \to x_0$ vuol dire che stiamo prendendo dei punti x in un intorno di x_0 via via sempre più vicini a x_0 , sia da destra che da sinistra e si dice

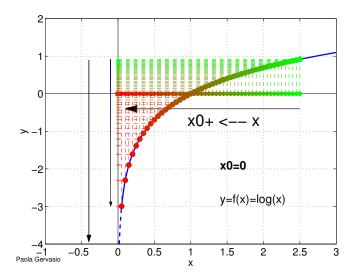


xtox0_dinamico.m

Mi interessa sapere come si comporta la funzione y = f(x) (ovvero come si comportano le ordinate dei punti del grafico) quando $x \rightarrow x_0$

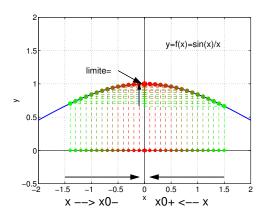


limite_log_dinamico.m



Per $x \to 0^+$ (cioè $x \to 0$ da dx), $f(x) = log(x) \to -\infty$ limite_log_0_dinamico.m

Altri esempi.

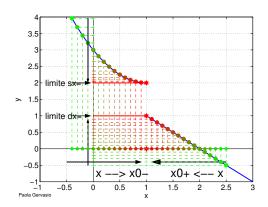


 $dom(f) = (-\infty, 0) \cup (0, \infty)$. f(x) non è definita in $x_0 = 0$, tuttavia posso vedere come si comporta f(x) quando $x \to 0^-$ e $x \to 0^+$.

Per
$$x \to 0^-$$
, $f(x) = \frac{\sin(x)}{x} \to 1$, per $x \to 0^+$, $f(x) = \frac{\sin(x)}{x} \to 1$.

limite_sinxsux_dinamico.m

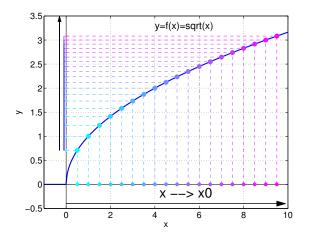
$$g(x) = \begin{cases} (x-1)^2 + 2 & x < 1 \\ -x + 2 & x > 1, \end{cases}$$
 non è definita in $x_0 = 1$



Per
$$x \to 1^+$$
, $g(x) \to 1$, per $x \to 1^-$ (cioè $x \to 1$ da sx), $g(x) \to 2$.

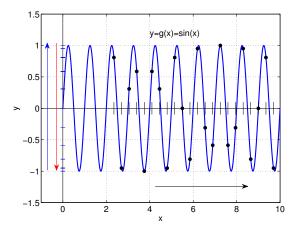
limite_fsalto_dinamico.m

Posso anche chiedermi come si comporta f(x) quando $x \to +\infty$



Per
$$x \to +\infty$$
, $f(x) = \sqrt{x} \to +\infty$ limite_sqrt_infinito.m

Mi chiedo come si comporta $g(x) = \sin(2\pi x)$ quando $x \to +\infty$

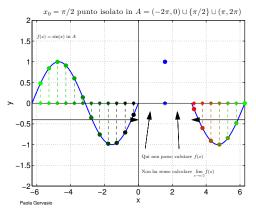


Per $x \to +\infty$, g(x) non tende ad alcun valore, ma continua ad oscillare

limite sin infinito.m

Sia $f(x) = \sin(x)$ definita in $A = (-2\pi, 0) \cup \{\pi/2\} \cup (\pi, 2\pi)$. $x_0 = \pi/2$ è punto isolato per A.

Non ha senso chiedersi cosa succede alla funzione quando $x \to \pi/2$ perché f non è definita in un intorno di $x_0 = \pi/2$



CONCLUSIONE: ha senso studiare il comportamento di f(x) per $x \to x_0$ solo se x_0 è un punto di accumulazione per il dom(f). limite f isolato.m

Limite di funzione al finito

Sia f una funzione definita in un intorno di $x_0 \in \mathbb{R}$ tranne eventualmente nel punto x_0 .

Questo equivale a dire: Sia x_0 un punto di acc. per dom(f).

N.B. Mi disinteresso del valore di f(x) nel punto x_0 . Nel punto x_0 la f potrebbe assumere qualsiasi valore o potrebbe non essere definita (cioè x_0 può non appartenere a dom(f)).

Voglio guardare cosa succede alla funzione (cioè alle y) per xmolto prossimo a x_0 .

Definizione di limite con $x_0 \in \mathbb{R}$ e $\ell \in \mathbb{R}$

Def. Si dice che f ha limite finito $\ell \in \mathbb{R}$ (o tende ad ℓ) per x**tendente** a x_0 e si scrive

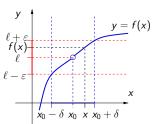
$$\lim_{x \to x_0} f(x) = \ell$$

se

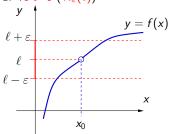
$$\forall \varepsilon > 0, \ \exists \delta > 0: \ \forall x \in \text{dom}(f): \ 0 < |x - x_0| < \delta \ \Rightarrow |f(x) - \ell| < \varepsilon$$

o equivalentemente (secondo la terminologia degli intorni)

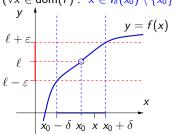
$$\forall I_{\varepsilon}(\ell) \ \exists I_{\delta}(x_0) : \ \forall x \in \mathsf{dom}(f) \cap I_{\delta}(x_0) \setminus \{x_0\} \ \Rightarrow \ f(x) \in I_{\varepsilon}(\ell)$$



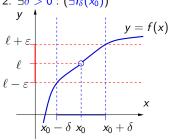
1.
$$\forall \varepsilon > 0 \ (\forall I_{\varepsilon}(\ell))$$



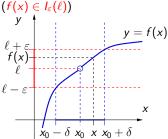
3. $\forall x \in \text{dom}(f): 0 < |x - x_0| < \delta$ $(\forall x \in \mathsf{dom}(f): \ x \in I_{\delta}(x_0) \setminus \{x_0\})$



2. $\exists \delta > 0 : (\exists I_{\delta}(x_0))$



4. $\Rightarrow |f(x) - \ell| < \varepsilon$ $(f(x) \in I_{\varepsilon}(\ell))$



Limite destro e limite sinistro

Consideriamo la funzione:

$$f(x) = \begin{cases} x & \text{se } x \le 0 \\ x+1 & \text{se } x > 0 \end{cases}$$

$$dom(f) = \mathbb{R}$$

Per
$$x \to 0^-$$
 le ordinate $y = f(x)$ tendono a 0, per $x \to 0^+$ le ordinate $y = f(x)$ tendono a 1 cosa è $\lim_{x \to 0} f(x)$?

Non si può parlare di $\lim_{x\to 0} f(x)$.

Bisogna specificare se $x \to 0^-$ (da sinistra) o $x \to 0^+$ (da destra). limite_def.m

1

f(x)

X

Limite sinistro

Def. Sia f una funzione definita in un intorno sinistro di x_0 , tranne eventualmente in x_0 (x_0 è punto di accumulazione per dom(f)). f ha limite sinistro in x_0 uguale a ℓ

$$\lim_{x \to x_0^-} f(x) = \ell$$

se

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in \mathsf{dom}(f), \ 0 < x_0 - x < \delta \ \Rightarrow |f(x) - \ell| < \varepsilon$$

oppure se

$$\forall I_{\varepsilon}(\ell) \ \exists I_{\delta}^{-}(x_{0}): \ \forall x \in \mathsf{dom}(f), x \in I_{\delta}^{-}(x_{0}) \setminus \{x_{0}\} \ \Rightarrow f(x) \in I_{\varepsilon}(\ell)$$

L'intorno completo $I_{\delta}(x_0)$ della definizione originaria di limite è qui sostituito dall'intorno sinistro $I_{\delta}^{-}(x_0)$.

Limite destro

Def. Sia f una funzione definita in un intorno destro di x_0 , tranne eventualmente in x_0 (x_0 è punto di accumulazione per dom(f)). f ha limite destro in x_0 uguale a ℓ

$$\lim_{x \to x_0^+} f(x) = \ell$$

se

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in \text{dom}(f), \ 0 < x - x_0 < \delta \ \Rightarrow |f(x) - \ell| < \varepsilon$$
 oppure se

$$\forall I_{\varepsilon}(\ell) \ \exists I_{\delta}^{+}(x_{0}): \ \forall x \in \mathsf{dom}(f), x \in I_{\delta}^{+}(x_{0}) \setminus \{x_{0}\} \ \Rightarrow f(x) \in I_{\varepsilon}(\ell)$$

Proposizione

Sia f una funzione definita in un intorno di $x_0 \in \mathbb{R}$, tranne eventualmente nel punto x_0 (cioè x_0 è punto di accumulazione per dom(f)).

La funzione f ha limite $\ell \in \mathbb{R}$ per $x \to x_0$ se e solo se esistono e sono uguali ad ℓ il limite destro ed il limite sinistro di f in x_0 , ovvero:

$$\lim_{x \to x_0} f(x) = \ell$$

$$\updownarrow$$

$$\exists \lim_{x \to x_0^-} f(x), \ \exists \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = \ell$$

Esempio. La funzione

$$f(x) = \begin{cases} x & \text{se } x \le 0 \\ x+1 & \text{se } x > 0 \end{cases}$$

ha:

$$\lim_{x \to 0^{-}} f(x) = 0 \quad \lim_{x \to 0^{+}} f(x) = 1 \quad \not \exists \lim_{x \to 0} f(x)$$

Abbiamo limite destro, limite sinistro, ma non esiste il limite completo

Definizione di limite con $x_0 \in \mathbb{R}$ e $\ell = +\infty$

Def. Si dice che f ha limite $+\infty$ (o tende ad $+\infty$) per x tendente a x_0 e si scrive

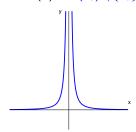
$$\lim_{x \to x_0} f(x) = +\infty$$

se

$$\forall A > 0, \ \exists \delta > 0: \ \forall x \in \text{dom}(f): \ 0 < |x - x_0| < \delta \ \Rightarrow f(x) > A$$

o equivalentemente (secondo la terminologia degli intorni)

$$\forall I_A(+\infty) \ \exists I_\delta(x_0): \ \forall x \in \text{dom}(f) \cap I_\delta(x_0) \setminus \{x_0\} \ \Rightarrow \ f(x) \in I_A(+\infty)$$



Definizione di limite con $x_0 \in \mathbb{R}$ e $\ell = -\infty$

Def. Si dice che f ha limite $-\infty$ (o tende ad $+\infty$) per x tendente a x_0 e si scrive

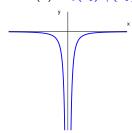
$$\lim_{x \to x_0} f(x) = -\infty$$

se

$$\forall A > 0, \ \exists \delta > 0: \ \forall x \in \mathsf{dom}(f): \ 0 < |x - x_0| < \delta \ \Rightarrow f(x) < -A$$

o equivalentemente (secondo la terminologia degli intorni)

$$\forall I_A(-\infty) \ \exists I_\delta(x_0): \ \forall x \in \text{dom}(f) \cap I_\delta(x_0) \setminus \{x_0\} \ \Rightarrow \ f(x) \in I_A(-\infty)$$



Limiti di funzioni a $+\infty$

Consideriamo una funzione y = f(x) reale a variabile reale, di dominio $D \subseteq \mathbb{R}$. Sia f definita in un intorno di $+\infty$ (cioè $+\infty$ è punto di accumulazione per dom(f)).

Def. La funzione f tende al limite $\ell \in \mathbb{R}$ per x tendente a $+\infty$ e si scrive

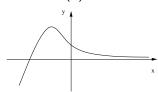
$$\lim_{x\to +\infty} f(x) = \ell,$$

se (con $\varepsilon, B \in \mathbb{R}$)

$$\forall I_{\varepsilon}(\ell), \ \exists I_{B}(+\infty): \ \forall x \in \text{dom}(f), \ x \in I_{B}(+\infty) \ \Rightarrow \ f(x) \in I_{\varepsilon}(\ell),$$

oppure:

$$\forall \varepsilon > 0, \ \exists B \geq 0: \ \forall x \in \text{dom}(f) \ \text{con} \ x > B \ \Rightarrow \ |f(x) - \ell| < \varepsilon,$$



Sia ancora f definita in un intorno di $+\infty$.

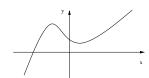
Def. La funzione f tende al limite $+\infty$ per x tendente a $+\infty$ e si scrive

$$\lim_{x \to +\infty} f(x) = +\infty,$$

se (con $A, B \in \mathbb{R}$)

 $\forall I_A(+\infty), \exists I_B(+\infty) : \forall x \in \text{dom}(f), x \in I_B(+\infty) \Rightarrow f(x) \in I_A(+\infty)$ oppure

$$\forall A > 0, \exists B \ge 0 : \forall x \in \text{dom}(f) \text{ con } x > B \Rightarrow f(x) > A,$$



Sia ancora f definita in un intorno di $+\infty$.

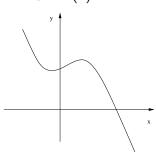
Def. La funzione f tende al limite $-\infty$ per x tendente a $+\infty$ e si scrive

$$\lim_{x\to +\infty} f(x) = -\infty,$$

se (con $A, B \in \mathbb{R}$)

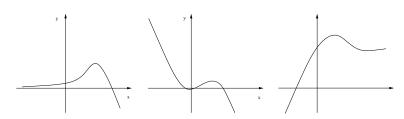
$$\forall I_A(-\infty), \exists I_B(+\infty) : \forall x \in \text{dom}(f), x \in I_B(+\infty) \Rightarrow f(x) \in I_A(-\infty)$$
 oppure:

$$\forall A > 0, \ \exists B \ge 0: \ \forall x \in \text{dom}(f) \ \text{con} \ x > B \ \Rightarrow \ f(x) < -A,$$



Sia f una funzione definita in un intorno di $-\infty$.

$$\lim_{x \to -\infty} f(x) = \ell \qquad \lim_{x \to -\infty} f(x) = +\infty \qquad \lim_{x \to -\infty} f(x) = -\infty$$



$$\lim_{x \to -\infty} f(x) = \ell$$

$$\forall I_{\varepsilon}(\ell) \exists I_{B}(-\infty) : \forall x \in \text{dom}(f) \cap I_{B}(-\infty) \Rightarrow f(x) \in I_{\varepsilon}(\ell)$$

$$\lim_{x \to -\infty} f(x) = +\infty$$

$$\forall I_A(+\infty) \; \exists I_B(-\infty) : \; \forall x \in \text{dom}(f) \cap I_B(-\infty) \; \Rightarrow \; f(x) \in I_A(+\infty)$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\forall I_A(-\infty) \ \exists I_B(-\infty) : \ \forall x \in \text{dom}(f) \cap I_B(-\infty) \ \Rightarrow \ f(x) \in I_A(-\infty)$$

Definizione generale di limite nella terminologia degli intorni

$$\lim_{x \to x_0} f(x) = \ell$$

- 1. Per ogni intorno del limite ℓ ,
- 2. esiste un intorno del punto di accumulazione x_0 ,
- 3. tale che per ogni x che sta nel dominio di f e contemporaneamente nell'intorno del punto di accumulazione, eccetto eventualmente il punto x_0 stesso,
- 4. allora f(x) cade nell'intorno del limite.

Questa definizione vale per ogni $x_0 \in \mathbb{R}$ e per ogni $\ell \in \mathbb{R}$.

Riferimenti bibliografici

Canuto-Tabacco, ed Pearson: Sect. 4.1, 4.3.1, 4.3.3.

Canuto-Tabacco, ed Springer: Sect. 3.1, 3.3.1, 3.3.3.

Esercizi Si considerino le funzioni elementari viste finora, valutare graficamente i limiti di tali funzioni agli estremi del dominio.

Esempio Sia
$$y = f(x) = 1/x$$
. dom $(f) = (-\infty, 0) \cup (0, \infty)$.

Bisogna valutare $\lim_{x\to -\infty} f(x)$, $\lim_{x\to 0^-} f(x)$, $\lim_{x\to 0^+} f(x)$ e $\lim_{x\to +\infty} f(x)$

osservando il grafico di f(x).