CALCOLO INTEGRALE

Calcolo Integrale

Dato un intervallo $I \subseteq \mathbb{R}$, si affrontano due tipi di problematiche:

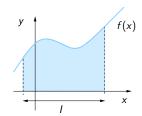
1. Integrazione indefinita.

Data $f: I \subseteq \mathbb{R} \to \mathbb{R}$ si vuole calcolare una funzione

F(x): F'(x) = f(x), ovvero si vuole compiere l'operazione inversa della derivazione

2. Integrazione definita.

Data $f: I \subseteq \mathbb{R} \to \mathbb{R}$ si vuole calcolare l'area della regione di piano compresa tra il grafico della funzione f(x) e l'asse delle ascisse per $x \in I$, come indicato in figura



Problema

Determinare lo spostamento di un'auto rispetto alla posizione che essa assume ad un istante iniziale $t_0 = 0$, al variare del tempo $t > t_0$, sapendo che essa si muove in città con una **velocità istantanea** (dipendente dal tempo t) pari a

$$v(t) = 30\sin^2(t) \quad \text{km/h}.$$

Velocità media

$$\overline{v} = \frac{\Delta s}{\Delta t}$$
 è la velocità media
$$\Delta t = t_2 - t_1 = 3 \text{ s}$$

$$\overline{v} = \frac{\Delta s}{\Delta t} = 20 \text{ m/s}$$

$$\Delta s = s_2 - s_1 = 60 \text{ m}$$

La velocità istantanea è

$$v(t) = \lim_{\Delta t o 0} rac{\Delta s}{\Delta t} = \lim_{\Delta t o 0} rac{s(t+\Delta t) - s(t)}{\Delta t} = s'(t).$$

Nota la derivata di una funzione, voglio risalire alla funzione:

Dato:
$$s'(t) = v(t)$$
,

incognita: s(t).

Questo tipo di problame è detto:

problema di integrazione indefinita, o calcolo di una primitiva di una funzione data.

Integrazione indefinita

Definizione di primitiva.

Sia $f:I\subseteq\mathbb{R}\to\mathbb{R}$.

Ogni funzione F derivabile in I e t.c.

$$F'(x) = f(x), \quad \forall x \in I$$

è detta primitiva di f in I.

Def. Una funzione f che ammette una primitiva è detta integrabile in senso indefinito.

Esempio. $f(x) = \cos(x)$, $I = \mathbb{R}$. La funzione $F(x) = \sin(x)$ è una primitiva di f in \mathbb{R} , in quanto $F'(x) = D(\sin(x)) = \cos(x) = f(x), \ \forall x \in \mathbb{R}.$

Oss. Anche la funzione $G(x) = \sin(x) + 5$ è una primitiva di f in \mathbb{R} .

Una qualsiasi funzione del tipo $F(x) = \sin(x) + c$, con $c \in \mathbb{R}$ è una primitiva di $f(x) = \cos(x)$.

Teorema. Due primitive F(x) e G(x) della stessa funzione f(x)sull'intervallo I possono differire solo per una costante, ovvero

$$G(x) - F(x) = c,$$
 con $c \in \mathbb{R}$.

Dim. Sia H(x) = G(x) - F(x). Se F e G sono due primitive, per definizione sono derivabili e lo è anche la loro differenza, quindi H è derivabile e H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0. Per il Teorema della derivata nulla allora H(x) è costante su I, ovvero H(x) = G(x) - F(x) = c.

Corollario. Sia $f:I\subseteq\mathbb{R}\to\mathbb{R}$ integrabile in senso indefinito su I, sia F(x) una sua primitiva.

Allora tutte le primitive di f su I sono del tipo

$$F(x) + c$$
, $con c \in \mathbb{R}$

Def. Indichiamo con $\int f(x)dx$ l'insieme di tutte le primitive di f in 1. ovvero

$$\int f(x)dx = \{F(x) + c, \ c \in \mathbb{R}, \ F \ \text{una primitiva di} \ f\}.$$

 $\int f(x)dx$ è detto integrale indefinito di f in dx.

Il calcolo della primitiva F di una funzione f data è un esempio di PROBLEMA INVERSO, precisamente è il problema inverso della derivazione

e l'integrale della derivata di una funzione F(x) ridà la funzione stessa (più una costante generica):

$$\int F'(x)dx = F(x) + c$$

Esemplo 1.
$$\int \cos(x) dx = \sin(x) + c$$
 (perchè $D(\sin(x)) = \cos(x)$)

Esempio 2.
$$\int dx = \int 1 dx = x + c$$

Esempio 3.
$$\int x dx = ?$$

$$f(x) = x$$
, cerco $F(x) : F'(x) = x$. Ricordo che $D(x^2) = 2x$, allora $x = \frac{1}{2}D(x^2) = D(\frac{1}{2}x^2)$. Ovvero $F(x) = \frac{1}{2}x^2$ e $\int x dx = \frac{1}{2}x^2 + c$

Esempio 4.
$$\int x^2 dx = ?$$

$$f(x) = x^2$$
, cerco $F(x) : F'(x) = x^2$.
Ricordo che $D(x^3) = 3x^2$, allora $x^2 = \frac{1}{3}D(x^3) = D(\frac{1}{3}x^3)$.

Ovvero $F(x) = \frac{1}{3}x^3 = \int x^2 dx = \frac{1}{3}x^3 + c$

$$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + c, \qquad \alpha \in \mathbb{R} \setminus \{-1\}$$

Esempio 5.
$$\int x^{-1} dx = \int \frac{1}{x} dx = ?$$
 $f(x) = \frac{1}{x}$, cerco $F(x) : F'(x) = \frac{1}{x}$. Ricordo che $D(\log(x)) = \frac{1}{x}$ per $x > 0$ e $D(\log(-x)) = \frac{1}{x}$ per $x < 0$, allora

$$\int \frac{1}{x} dx = \log(|x|) + c, \qquad \text{per } x > 0 \text{ e } x < 0$$

Ricordando le derivate delle funzioni elementari abbiamo:

$$\int \sin(x)dx = -\cos(x) + c \qquad \int e^{x}dx = e^{x} + c$$

$$\int \frac{1}{1+x^{2}}dx = \arctan(x) + c \qquad \int \frac{1}{\sqrt{1-x^{2}}}dx = \arcsin(x) + c$$

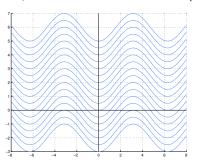
Esercizio 1. Calcolare la primitiva di $f(x) = \sin(x)$ che vale 5 in $x_0 = \pi$.

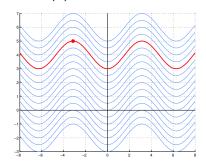
Sappiamo che $\int \sin(x)dx = -\cos(x) + c$. Tra tutte le primitive, cerco quella che vale 5 in $x_0 = \pi$, ovvero $-\cos(\pi) + c = 5$.

Ottengo una equazione in cui l'incognita è c e la ricavo:

$$c = 5 + \cos(\pi) = 5 - 1 = 4$$
.

La primitiva cercata è allora $F(x) = -\cos(x) + 4$.





Proprietà di linearità dell'integrale

Teorema

Siano f(x) e g(x) due funzioni integrabili (in senso indefinito) su I. Allora, $\forall \alpha, \beta \in \mathbb{R}$, anche la funzione $h(x) = \alpha f(x) + \beta g(x)$ è integrabile e si ha:

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

Esempio. Calcolare $\int (4x^3 + 2x^2 - \frac{5}{1+x^2})dx$.

$$\int (4x^3 + 2x^2 - \frac{5}{1+x^2})dx = 4 \int x^3 dx + 2 \int x^2 dx - 5 \int \frac{1}{1+x^2} dx$$

$$= 4\frac{1}{4}x^4 + c_1 + 2\frac{1}{3}x^3 + c_2 - 5\arctan(x) + c_3$$

$$= x^4 + \frac{2}{3}x^3 - 5\arctan(x) + c$$

Oss. Si mette una sola costante per tutti gli integrali:

$$c = c_1 + c_2 + c_3$$
.

Regola di integrazione per parti

Teorema. Siano f(x) e g(x) due funzioni derivabili su 1. Se f'(x)g(x) è integrabile su I, allora lo è anche f(x)g'(x) e

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$$

Esempio. Calcolare $\int \log(x) dx$.

Riscrivo $\int \log(x) dx = \int 1 \cdot \log(x) dx$,

$$f'(x) = 1$$
, $g(x) = \log(x)$ \Rightarrow $f(x) = x$, $g'(x) = \frac{1}{x}$

Applicando la regola di integrazione per parti, si ha:

$$\int 1 \cdot \log(x) dx = x \log(x) - \int x \frac{1}{x} dx = x \log(x) - x + c$$

Quindi

$$\int \log(x)dx = x\log(x) - x + c$$

Esempio. Calcolare $\int \sin^2(x) dx$.

Abbiamo:
$$\int \sin^2(x) dx = \int \sin(x) \cdot \sin(x) dx$$
.

$$f'(x) = \sin(x), \ g(x) = \sin(x) \Rightarrow f(x) = -\cos(x), \ g'(x) = \cos(x)$$

Applicando la formula di integrazione per parti abbiamo:

$$\int \sin^2(x)dx = \int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$$
$$= -\cos(x)\sin(x) + \int \cos^2(x)dx$$
$$= -\cos(x)\sin(x) + \int (1 - \sin^2(x))dx$$
$$= -\cos(x)\sin(x) + x + c - \int \sin^2(x)dx$$

Da cui:
$$2 / \sin^2(x) dx = -\cos(x) \sin(x) + x + c$$

ovvero:

$$\int \sin^2(x) dx = \frac{1}{2} (x - \cos(x)\sin(x)) + c$$

In maniera analoga si ha

$$\int \cos^2(x)dx = \frac{1}{2}(x + \cos(x)\sin(x)) + c$$

Notazione di derivazione secondo Leibniz

Per denotare l'operazione di derivata, Leibniz usava la notazione

Data
$$y = f(x)$$
, si ha $f'(x) = \frac{df(x)}{dx} = \frac{dy}{dx}$

La notazione di Leibniz si presta ad essere interpretata come una frazione, quindi dal primo e dall'ultimo termine dell'uguaglianza scritta sopra si ha:

$$dy = f'(x)dx$$

Regola di integrazione per sostituzione

Teorema. Siano I e J due intervalli in \mathbb{R} .

Sia $\varphi: I \to J$ una funzione derivabile.

Sia $f: J \to \mathbb{R}$ una funzione integrabile.

Sia F una primitiva di f sull'intervallo J.

Allora la funzione $f(\varphi(x))\varphi'(x)$ è integrabile sull'intervallo I e si ha:

$$\int f(\varphi(x))\varphi'(x)dx = F(\varphi(x)) + c$$

Interpretazione:

Posto $y = \varphi(x)$, si ha $dy = \varphi'(x)dx$ e

$$\int f(\varphi(x))\varphi'(x)dx = \int f(y)dy = F(y) + c = F(\varphi(x)) + c$$

Esempio. Calcolare $\int 2xe^{x^2}dx$.

Dobbiamo individuare una funzione $\varphi(x)$ e la sua derivata $\varphi'(x)$ per poter scrivere l'integrale come $\int f(\varphi(x))\varphi'(x)dx$.

Poniamo:

$$y = \varphi(x) = x^2,$$
 da cui $\frac{dy}{dx} = \varphi'(x) = 2x,$ $dy = \varphi'(x)dx = 2xdx.$

Di conseguenza:

$$\int 2xe^{x^2}dx = \int \underbrace{e^{x^2}}_{e^y} \underbrace{2xdx}_{dy}$$
$$= \int e^y dy = e^y + c = e^{x^2} + c.$$

Esempio. Calcolare $\int \tan(x) dx$.

Anzitutto osserviamo che
$$\int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx = \int \frac{1}{\cos(x)} \sin(x) dx.$$

Poniamo:

$$y = \varphi(x) = \cos(x),$$
 da cui $\frac{dy}{dx} = \varphi'(x) = -\sin(x),$ $dy = \varphi'(x)dx = -\sin(x)dx.$

Di conseguenza:

$$\int \frac{1}{\cos(x)} \sin(x) dx = -\int \underbrace{\frac{1}{\cos(x)}}_{1/y} \underbrace{(-\sin(x)) dx}_{dy}$$
$$= -\int \frac{1}{y} dy = -\log|y| + c = -\log|\cos(x)| + c.$$

Riferimenti bibliografici:

Canuto-Tabacco (ed. Springer), cap. 9.1 e 9.2. Canuto-Tabacco (ed. Pearson), cap. 10.1 e 10.2.

Esercizi:

n. 1 - 12 del capitolo del libro.